Ir al contenido principal

Entradas

Destacado

La Conjetura de Catalan

Las conjeturas de apariencia simple que implican números enteros pueden llegar a confundir a los matemáticos más brillantes. Como el caso del último teorema de Fermat, pueden transcurrir siglos sin que se demuestren o refuten. Es posible que algunos no se resuelvan nunca, ni siquiera con el trabajo conjunto de humanos y ordenadores.
Para acercarnos a la Conjetura de Catalan, imaginemos los cuadrados de los números naturales mayores que $1$: $4, 9, 16, 25, 36,\dots$ Consideremos ahora los cubos de los naturales (mayores que $1$): $8, 27, 64, 125\dots$ Ahora, si unimos ambos conjuntos de cuadrados y cubos y ordenamos cada elemento de menor a mayor, obtendremos $4, 8, 9, 16, 25, 27, 36, \dots$ Nótese que el $8(2^3)$ y el $9(3^2)$ son consecutivos.
En 1 844, el matemático belga Eugène Catalan conjeturó que el $8$ y el $9$ eran las únicas dos potencias consecutivas de números enteros. Si existiera otra pareja de números consecutivos, podría encontrarse buscando los valores enteros (mayore…

Últimas entradas

Obtaining a function by using transformations

El número de Champernowne

Las Disquisitiones arithmeticae de Gauss

Ejercicios resueltos de Cálculo Vectorial

Proove that $2n-3\leq 2^{n-2}$ for all $n\geq 5$

Probabilidades de un candidato para llegar a la presidencia

Demostración de la Fórmula General

El número $2016$ y sus curiosidades

Cifras iniciales en los Factoriales

Epifanías